
Towards Interactive Object Recognition
Karol Hausman Chet Corcos Jörg Müller Fei Sha Gaurav S. Sukhatme

Department of Computer Science, University of Southern California, Los Angeles, CA, USA
{hausman, corcos, joerg.mueller, feisha, gaurav}@usc.edu

I. INTRODUCTION

Object recognition is a key component of service robots for
finding and handling objects. Current state-of-the-art object
recognition systems recognize objects based on static im-
ages [7, 8]. However, these systems prove limited in cases
when objects are in ambiguous orientations or distinctive
features are hidden, e.g., due to the pose of the object.

A popular approach to tackle this problem is active percep-
tion [1, 3], where the robot intelligently moves its camera to
reveal more information about the scene. However, there are
cases where this approach will fail because distinctive features
are hidden, for example, on the bottom side of the object
(see Fig. 1). These cases are particularly common in cluttered
environments, where features might be occluded not only due
to the pose of the object but also by other items in the scene. It
has been recently studied in the area of interactive perception
that interacting with the scene exposes new possibilities to
tackle common perception problems. This paper addresses
both challenges—selecting an object of a cluttered scene
for manipulation and picking the optimal movement of this
object—in an information-theoretic way to improve interactive
perception methods.

Interacting with a scene to improve perception by revealing
informative surfaces has been particularly explored in the area
of segmentation. Examples are: interactive segmentation of
rigid objects being moved by a robot [5], segmentation of
articulated objects [4], and disambiguation of segmentation
hypothesis [2]. However, none of these approaches reason
about what actions to take in order to achieve the goal.

In this work we introduce a probabilistic method for choos-
ing object manipulation actions to optimally reveal information
about objects in a scene based on robot’s observations. To
the best of our knowledge, the problem of interactive object
recognition has not been addressed before. Our approach
determines the optimal action for a robot to interact with
objects and adjust their pose to reveal discriminative features
for determining their identity. In the ambiguous book example
(see Fig. 1), this means flipping the book over and observing
the cover, which results in more confident recognition. Our
method is based on a probabilistic graphical model for feature-
based object and pose recognition. By inferring posterior
distributions of object probabilities conditioned on all previous
actions and observations, our approach enables a robot to
select the optimal action to reduce the uncertainty of the
object.

The key contributions of this approach are: (a) it presents
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Fig. 1. Top-left: The service robot PR2 trying to recognize a book based on
its back. The database of objects consists of book 1 (top-right, NE and NW)
and book 2, (top-right, SE and SW) that look the same from the back. PR2
takes the optimal action in order to recognize which book it is. In this case
it means it flips it over (bottom-left, bottom-right).

a probabilistic action selection model that reasons about the
most informative action and (b) it uses a probabilistic object
recognition model that is indifferent of the feature type.

II. APPROACH

Our approach chooses actions that minimize the uncertainty
about an object being observed. We introduce a feature-
based observation model that is used for probabilistic object
recognition. We extend this model into a temporal graphical
model to incorporate actions. Finally, we propose an expected
entropy measure to find the optimal action that will minimize
the uncertainty of the object.

A. Probabilistic Graphical Model
1) Observation Model: We use an observation model

p(F|o, p) where object and pose result in the appearance of
specific features that are observed by the robot. This graphical
model is shown in dotted lines in Fig. 2. The model consists
of N discrete objects, O ∈ {o1, o2, ..., oN} in I discrete poses
P ∈ {p1, p2, ..., pI}. We model M features F = {f1, ..., fM}
where F is a set of continuous random variables fi. This model



assumes features are conditionally independent given an object
and its pose.

2) Object Recognition: The posterior of the object-pose is
given by Eq. (1) with some prior p(o, p) and the observation
model p(F|o, p).

p(o, p|F) = p(o, p) · p(F|o, p)∑
n,i p(F|on, pi) · p(on, pi)

(1)

3) Interactive Object Recognition: To model actions, the
object-recognition subgraph is extended into a temporal graph-
ical model. For each pose, actions are modeled as I relative
pose transformations including the stay action. In this model,
the next pose Pt+1 is dependent only on the previous pose
Pt and the previous action At. This results in the graphical
model shown in Fig. 2.
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Fig. 2. Probabilistic graphical model for interactive object recognition.

The posterior at time t + 1 given the entire history of
observations and actions is a recursive Bayesian update of the
posterior at time t given in Eq. (2).

p(o, Pt+1|F1:t+1, A1:t) =∑
Pt

p(o, Pt|F1:t, A1:t−1)p(Ft+1|o, Pt+1)p(Pt+1|Pt, At)∑
Pt,Pt+1,O

p(O,Pt|F1:t, A1:t−1)p(Ft+1|O,Pt+1)p(Pt+1|Pt, At)

(2)
4) Optimal Action Selection: We define the optimal action

for object recognition as moving an object into a pose in
which the next observation minimizes the uncertainty of the
object. This results in a minimum entropy of the distribution
of posterior object prediction probabilities.

Because we haven’t observed Ft+1, we must compute the
expected entropy of the posterior in Eq. (2). The optimal action
is selected as the action which minimizes the expected entropy
of object prediction posteriors across all potential actions:

A∗t = argmin
At

EFt+1∼p(Ft+1|F1:t,A1:t)H [ O|F1:t+1, A1:t ] (3)

B. Implementation

1) Observation Model: Each feature in the model has an
associated type j and a value or descriptor with which to
compute a similarity or matching error Ej(·, ·) with respect to
another feature of the same type. Object and pose are predicted
using a model p(f |o, p) derived from matching errors between
observed feature values, Fobs and the set of reference feature

values of the model, F. The features of the model are selected
as the set of all unique features from all objects and poses
observed in an ideal setting. Given an observation, Fobs, the
best matching error e with respect to a feature in the model
f j ∈ F is given by Eq. (4).

e(f j) = min
fj

obs∈Fobs

Ej(f j , f j
obs) (4)

For our model, we used SIFT [6] features and approximate
the distribution of e(f j) by a normal distribution.

2) Optimal Action Selection: To efficiently compute the
expected entropy given in Eq. (3), the posterior distribution is
sampled for each action. First, the evidence given in Eq. (5)
is sampled.

p(Ft+1|F1:t, A1:t) =∑
Pt,Pt+1,O

p(Ft+1|O,Pt+1)p(Pt+1|Pt, At)p(O,Pt|F1:t, A1:t−1)

(5)

This distribution can be sampled trivially by first sampling
object-poses based on the discrete distribution defined by
the previous posterior, p(O,Pt|F1:t, A1:t−1). Then, for each
sampled object-pose, a sample representing a potential next
observation is drawn from the feature likelihood distribution
p(Ft+1|O,Pt+1). In our experiment, we assume a perfect
actuator, i.e. p(Pt+1|Pt, At) ∈ {0, 1}. Thus, given an action
and a pose, the next pose can be computed deterministically.

The next posterior is computed for each sample by Eq. (2).
The posterior object probability is computed by marginaliza-
tion given in Eq. (6).

p(O|F1:t+1, A1:t) =
∑
Pt+1

p(O,Pt+1|F1:t+1, A1:t) (6)

The entropy of the posterior object probabilities is computed
for each sample and then averaged to give the expected entropy
of the object posterior. The expected entropy is computed
for each potential action and the optimal action is selected
according to Eq. (3).

III. EXPERIMENTAL RESULTS

We evaluated the proposed approach on a dataset consisting
of N = 4 books in I = 4 poses. We used two pairs of books
which are ambiguous on the back and unambiguous on the
front. Fig. 3 shows the covers of all the books used for the
experiment. All poses are presented in Fig. 4.

M = 654 unique features were extracted from a set of ideal
images of each object-pose pair. We recorded 100 training
samples for each object-pose pair to learn the likelihood
distribution p(f |o, p). For the ambiguous cases, we used the
same training images.

Our experimental setup consists of an RGB camera and one
of the books. In our preliminary experiment, all the actions
were executed by a human.



Fig. 3. Books from the cover side used for the experiment. Two first books
and two last books look the same from the back side.

Fig. 4. All the poses used for object-pose recognition. Please note the
visibility of the spine.

A. Object Recognition

In order to evaluate the object recognition model, we
trained the model on 80 samples and held out 20 samples
for cross validation. The average prediction accuracy for the
unambiguous cases is 99.67% for the training data and 93.75%
for the cross validation data. We did not include the ambiguous
poses in the cross validation results because these ambiguous
cases were designed to cause static object recognition to fail.

B. Action Selection

An action selection experiment is represented by the de-
cision tree in Fig. 5. The ambiguous back of the book pose
was observed as shown in Fig. 6 (top-left). As expected, the
posterior probabilities were split between the two ambiguous
books shown in Fig. 6 (top-right).

Of the four actions, staying and rotating result in similarly
ambiguous poses resulting in an expected entropy of 0.7.
Flipping the book over, with and without rotating, lead to
similarly unambiguous poses with an expected entropy of
0. After flipping the book, the robot observes the cover

Fig. 5. Decision tree based on the action selection algorithm. Each node
in the tree represents the expected entropy of the posterior probability for a
given action. Colored nodes indicate the choice of the action that results in
the minimum expected entropy.

Fig. 6. Left: observed image for the first observation (top) and the corre-
sponding posterior probability of object and pose after the first observation
(bottom). Right: Analogous graphs after the second observation (i.e. after the
action was taken).

(Fig. 6 bottom-left) and predicted the correct object with 100%
certainty (Fig. 6 bottom-right).

IV. CONCLUSIONS

We have presented a probabilistic framework for interactive
object recognition. We formulated a minimum expected en-
tropy principle for determining the optimal action to reduce
uncertainty in object recognition. A preliminary experiment on
the ambiguous book problem shows encouraging results.

There are several areas for future work in this domain. We
believe that loosening our constraints on discrete poses with
perfect actions into continuous poses and noisy actions will
enable this work to be very useful in cluttered environments.
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